Covalently Bound Clusters of Alpha-Substituted PDI-Rival Electron Acceptors to Fullerene for Organic Solar Cells.
نویسندگان
چکیده
A cluster type of electron acceptor, TPB, bearing four α-perylenediimides (PDIs), was developed, in which the four PDIs form a cross-like molecular conformation while still partially conjugated with the BDT-Th core. The blend TPB:PTB7-Th films show favorable morphology and efficient charge dissociation. The inverted solar cells exhibited the highest PCE of 8.47% with the extraordinarily high Jsc values (>18 mA/cm(2)), comparable with those of the corresponding PC71BM/PTB7-Th-based solar cells.
منابع مشابه
Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells
Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear ...
متن کاملDoes a nitrogen matter? Synthesis and photoinduced electron transfer of perylenediimide donors covalently linked to C59N and C60 acceptors.
The first perylenediimide (PDI) covalently linked to an azafullerene (C59N) is described. PDI-C59N and PDI-C60 dyads where PDI acts as an electron-donor moiety have been synthesized by connection of the balls to the PDI 1-bay position. Photoexcitation of the PDI unit in both systems results in formation of the charge-separated state by photoinduced electron transfer from the singlet excited sta...
متن کاملPlanar perovskite solar cells using fullerene C70 as electron selective transport layer
Owing amongst other to its high electron mobility, fullerene C70, has been widely used as an electron transporting layer in organic solar cells. In this research, we report the use of C70 thin films as electron transport layers of planar perovskite solar cells (PSCs) using a conventional device structure. The thickness of the C70 layer has been optimized to achieve the best efficiency of 12%. I...
متن کاملEnergy Level Tuning of Non-Fullerene Acceptors in Organic Solar Cells
The use of non-fullerene acceptors in organic photovoltaic (OPV) devices could lead to enhanced efficiencies due to increased open-circuit voltage (VOC) and improved absorption of solar light. Here we systematically investigate planar heterojunction devices comprising peripherally substituted subphthalocyanines as acceptors and correlate the device performance with the heterojunction energetics...
متن کاملEfficient organic solar cells with helical perylene diimide electron acceptors.
We report an efficiency of 6.1% for a solution-processed non-fullerene solar cell using a helical perylene diimide (PDI) dimer as the electron acceptor. Femtosecond transient absorption spectroscopy revealed both electron and hole transfer processes at the donor-acceptor interfaces, indicating that charge carriers are created from photogenerated excitons in both the electron donor and acceptor ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 138 23 شماره
صفحات -
تاریخ انتشار 2016